Photo Credit: CARPE

The Congo Basin is a critical tropical forest that supplies vital regional and worldwide ecological services. It is one of the largest tropical rainforests in the world, home to thousands of endemic plant and animal species such as lowland gorillas, chimpanzees, bonobos, and forest elephants. More than eighty million people depend on its abundance of timber and other natural resources for their livelihoods. A paradoxical note is that despite the richness of the Congo Basin, the people near it are some of the poorest in Africa. The forest is constantly cleared to make room for agricultural pursuits and to feed urbanized areas’ hunger for lumber. In addition to deforestation and forest degradation, illegal hunting and commercial bushmeat trade are major threats to biodiversity.

The Central African Regional Program for the Environment (CARPE) is a USAID longterm and regional initiative formed in 1995 in association with a consortium of government and NGO partners that concentrates its resources on six principal forested countries in Central Africa: Cameroon, Central African Republic, Democratic Republic of Congo, Equatorial Guinea,  Gabon, and the Republic of Congo. Uganda, Rwanda, Chad, Burundi, Rwanda and Sao Tome Principe are also involved in the initiative. CARPE is intended to be a 20-year process, resulting in complete local guidance. A major objective of CARPE is to protect forest resources by reducing degradation and protecting biodiversity. Modern tools such as Landsat satellite-derived maps, remote sensing, GIS, and geospatial databases are used for planning and monitoring of the forest. With this information, threatened species are under the protection of local communities and logging is controlled.

 

Prior to the development of CARPE, vast areas of the Congo Basin were unknown. Since then, a number of initiatives and activities have taken place, resulting in an overall evaluation in 2011. In this evaluation, CARPE was deemed extremely successful for introducing large-scale ecosystem management approaches. Tens of thousands of individuals have been trained in a variety of conservation methods and techniques. With   empowerment through such training and motivation that educates and organizes local groups to play an active role in forest and biodiversity conservation programs, civil society is being strengthened. This is seen as critical, circumventing the often inefficiently administered and economically weak centralized governments. The tools practiced allow for an understaffed patrol to communicate with a wider audience, limiting the “weak state management of these resources (that) creates a vacuum where local populations are often stripped of benefits as stronger or elite groups including private companies expropriate natural resources at sub-national and local levels.”Where will CARPE head in the coming years? The implementation of land use management plans for micro- and macro- zones, strengthening of government capacity and transparency are key.

 

Last week The Guardian announced that we’re now able to see the Amazonian rainforest as never seen before. A group of scientists, using LIDAR (Light Detection and Ranging) took images from a plane called the Carnegie Airborne Observatory. The images were taken by bouncing a laser beam off of the forest canopy at 400,000 times per second. The resulting images are vibrant, showcasing variation in biodiversity at unprecedented detail. The new technology will be used to manage the ecosystem, monitoring for signs of deforestation and degradation.

Photo Credit: RBCT

One of the leading programs with interest in the way HIV/AIDS is affecting the environment and natural resource management (NRM) activities is the USAID’s Africa Biodiversity Collaborative Group (ABCG).

ABCG, as a result, has initiated a number of communication strategies to combat the negative impact of HIV/AIDS on the environment. On this 2011 World’s AIDS Day, I find it appropriate to reflect on the role of information and communication technologies (ICTs) in increasing the effectiveness of communication strategies for combating negative impacts of HIV/AIDS on the environment.

Impacts of HIV/AIDS on the Environment and Natural Resource Management Activities

According to ABCG, HIV/AIDS has impacted the conservation workforce, conservation activities, and finances of conservation government agencies, non-governmental organizations (NGOs) and communities. The pandemic has caused accelerated rates of illnesses and deaths among park wardens, rangers, community game guards, senior officials and other conservation personnel; accelerated rates of payment of terminal benefits by conservation government agencies; created competition for scarce financial resources between HIV/AIDS demands and conservation activities; led to accelerated and unsustainable rates of harvesting of medicinal plants and wildlife; is destroying communal social structures on which community-based natural resource management (CBNRM) is based; and has led to land use changes in some places.

The program has identified the following key impacts of the HIV/AIDS pandemic on natural resource management:

  • Changes in land use as agricultural practices change with falling capacity for heavy labor,
  • Changes in access to resources and land especially when widows and AIDS orphans cannot inherit land,
  • Loss of traditional knowledge of sustainable land and resource management practices,
  • Increased vulnerability of community-based natural resource management programs as communities lose leadership and capacity, and HIV/AIDS issues take priority, and
  • Diversion of conservation funds for HIV/AIDS related costs.

ABCG’s Communication Strategies and the Role of ICTs

With the above recognized negative impacts of HIV/AIDS on the environment and natural resource management, ABCG has agreed that ICTs are uniquely positioned to help increase the impacts of their communication strategies. Some of the current approaches being used include:

  • The use of its website with updated materials including PowerPoint presentations, papers, and web links on case studies conducted on HIV/AIDS and environmental conservation.
  • Networking among the regional partners to share useful information on the issue.
  • Workshops
  • International Conferences
  • AIDS and Conservation Posters by ABCG

So how can ICTs be integrated into these strategies for effective impact on HIV/AIDS?

Looking at the great potentials of ICTs for knowledge and information sharing, the current communication approaches by ABCG may have limited use of ICTs for sharing knowledge on best practices about HIV/AIDS and the environment. A host of the emerging social media tools and platforms are excellent avenues for partners to share information on HIV/AIDS and environmental conservation activities thereby facilitating the work of ABCG in its fight for environmental conservation.

a) Blogs taking the form of a diary, journal, and links to other websites could be great tools for sharing and creating awareness of HIV/AIDS on the environment.

b) Twitter accounts can be used to share instant updates from friends, industry experts, favorite celebrities, and others of the impact of HIV/AIDS on the environment, the prevention strategies, and what’s happening around the world with specific focus on natural resource management and HIV/AIDS.

c) Social networking applications like Facebook with pages specifically created on the issue could help bring like-minded individuals and organizations together to discuss the issue online.

d) Events such as Meetup.com and free Wibinar applications such as WebEx channels may be used to connect partners and advocates together to share information and knowledge on HIV/AIDS and the environment.

e) Wikis pages are great knowledge management and collaborative tools that could be used to capture, find, share, and use information on HIV/AIDS and environmental conservation. Wikis help keep knowledge current, dynamic, and safe for members.

f) Photo sharing applications like Flicker, Picasa, Fotki, Mobile Me, Windows Live SkyDrive could be used to share real-time updates on HIV/AIDS and environment through images.

g) Video sharing tools like YouTube could be used to create awareness of the danger of HIV/AIDS on the environment.

h) Professional networking tools like LinkedIn may bring together experts from the various fields – HIV/AIDS, NRM, Climate Change, among others to discuss the issue.

When the necessary ICT policies and infrastructure are put in place among the ABCG collaborating partners and the regional networks, the use of these applications should not be an obstacle to information sharing on HIV/AIDS and the environment.

Photo Credit: Resurgence

One of the new approaches to the Climate Change menace being explored by most of the key stakeholders in the sector is the “Resilience” approach which focuses on enabling communities to better withstand, recover from, and adapt to the changing conditions posed by climate change.

This approach cannot be fully functional in this information age without the central role of information and communication technologies (ICTs) in general, and mobile technologies in specific. This is becoming obvious especially in the continent of Africa where the increase in terms of the number of mobile phone subscribers and penetration has been greatest. Recognizing this, the Global Humanitarian Forum together with Ericsson, the World Meteorological Organization, National Meteorological Services (NMSs), the Earth Institute at Columbia University, Zain and other mobile phone operators are aiming to deploy up to 5,000 automatic weather stations (AWSs) at wireless network sites across Africa within the next few years. This public-private-partnership aims to reinforce the capacities and the capabilities of national meteorological services with the goal of supporting local communities worst impacted by climate change through the improvement of weather monitoring.

In early 2009, the president of the Global Humanitarian Forum, Mr. Kofi Annan announced the Weather Information for All (WIFA) Initiative and as of the end of June, the WIFA Initiative have completed Phase I through installation of 19 AWSs in three East African countries – 1 in Kenya, 9 in Tanzania and 9 in Uganda. All 19 AWSs are fully operational and successfully transferring raw weather data to the National Meteorological Stations (NMSs). Automatic weather stations (AWS) are automated type of traditional weather stations that enable measurements from remote areas to save human labor. While AWS are known to deliver via local link to a computer system or via telecommunications or satellite systems, GSM mobile phone technology has also been used.

The clip below tells the Climate Change story and the efforts by the Global Humanitarian Forum to build the resilience for vulnerable communities:

The phase II of the Initiative is currently ongoing with the target of about 500 AWSs to be progressively installed throughout Kenya, Tanzania and Uganda, with the later addition of Burundi and Rwanda. A recent report by Uganda at the beginning of this year emphasized the utilization of mobile phone technology to develop a sustainable warning service that reduces the vulnerability of communities in the Lake Victoria Region to weather hazards. The report indicated that the quality of data being collected by the AWSs located at mobile phone mast sites is evaluated through a systematic and scientific (peer reviewed) data trial. This has led to the routine dissemination of more accurate, timely and reliable weather forecasts and warnings to the pilot communities of fishermen, in Uganda, for the duration of the trial. Seasonal and other weather information provided via Uganda Department of Meteorology website and disseminated via mobile WEB, or WAP, for the duration of the pilot for the chosen agricultural communities.

Approximately 70% of Africans rely on farming for their livelihood, and over 95% of Africa’s agriculture depends on natural rainfall – rain-fed agriculture. At the same time, rural farmers across the continent are known to utilize the strength of their local knowledge, skills, experiences, observation and insights to maintain or improve their livelihood in the absence of scientific resources. Unfortunately, the “Wicked Problem” of climate change is rendering some of these innovations and experiences unreliable. The dwindling weather and climate is preventing rural farmers from accurately predicting the weather and thereby thwarting them from making informed decisions, such as when to plant and harvest their crops.

In addition to this direct utilization of mobile technologies to gather weather information remotely and deliver up-to-date information to computer systems that are being used by rural communities, the ubiquitous use of mobile technologies could be see in a host of other subsidiary areas. A Reuters article pointed out at least ten ways by which ICTs and mobile technologies could help in climate change adaptation. Among these are:

i) The use of mobile phones, community radio and the Internet to enable information sharing, awareness raising and capacity building on key health threats, enabling effective prevention and response;

ii) ICT applications such as Geographic Information Systems (GIS) are being used to facilitate the monitoring and provision of relevant environmental information to relevant stakeholders, including decision-making processes for the adaptation of human habitats;

iii) Mobile phones and SMS are being used for reporting locally-relevant indicators (e.g. likelihood of floods) to greater accuracy and more precise flood warnings to communities;

iv) Access to insurance and information about national programs/assistance available to support vulnerable populations after floods, hurricanse, and others are being made possible through the Internet or the mobile phone;

v) ICTs are being used to enhance information about pest and disease control, planting dates, seed varieties, irrigation applications, and early warning systems, as well as improving market access, among others; 

vi) Mobile phones can serve as tools to disseminate information on low-cost methods for desalination, using gray water and harvesting rainwater for every day uses, as well as for capacity building on new irrigation mechanisms, among others.

Mobile technologies are of no doubt capable of helping to prepare vulnerable communities to deal with stresses and disturbances as a result of climate change, while retaining the same basic structure and ways of functioning, hence an excellent tool for climate change resilience.

Maryland Science Center – Citizen Science – C3.

The Maryland Science Center is developing a smartphone application to allow users to measure and monitor the urban heat island effect.  “UNI provides a glimpse” according to their website, “at what the world may look like with warmer temperatures.”  This will help urban planners and inhabitants to develop strategies to cope, e.g., planting more shade trees and choosing varieties and species that are well adapted to the climate of the urban environment.

This is a good example of how ICT can enhance citizen science, a particularly promising flavor of public participation consistent with good government principles.  Smartphones, while sometimes available, are not widely affordable in developing countries, and in many places, the data networks to support them are not in place.  There are however ways to use SMS, which is widely available, for citizen observations.  Any good examples of environmental monitoring using SMS would be welcome!

Information and communications technology has a growing role in international development.  Global connectivity through the Internet and through mobile phone technology is bringing people closer together to trade, share, and learn in a wide range of sectors, from agriculture, to manufacturing, financial services to water supply.

4In coming weeks and months, we will feature innovations in ICT for environmental protection and the sustainable use of natural resources in these pages.  Today we will begin with an overview of some of the different ways in which ICT can be used, and give a few examples of innovative products that we think can make a difference.  Someday, we would like to have an exhaustive survey of tools. Those of you who are reading this are almost certainly already familiar with the topic.  If that’s the case, you’ll know the power of social networking.  Let’s do a little social networking of our own and share ideas about ICT for natural resources – either innovations that you feel the world should know more about, or ideas that you have for innovations that should be brought to the attention of technology community.

ICT can make a difference in natural resource management in several ways.  A major contribution the improvement of information used for decision making and access to that information. The science of data management is called informatics, and sometimes when the term is used for environmental sciences, it is called ecoinformatics. A key to good data management is interoperability. To better understand trends and causal relationships, it is necessary to combine data from different sources. Doing this requires the development of standards and protocols for describing phenomena, as well as quality control to ensure that the knowledge that results is based on facts.  We will review ecoinformatics in more detail in later posts; for now, have a look at Data Basin, a fantastic tool for curating data that can be located in space and time using maps.  Data Basin provides a way to host and manipulate data sets to create knowledge – to tell a story based upon observations.  But it goes further – it includes a reputation system for ranking data sets, and social networking tools to bring data users together to interpret, critique, and collaborate in the development of knowledge products.

Of course, information is not very useful if it is not accessible.  And access to reliable information has long been a barrier to effective decision-making in many parts of the world.  This is changing.  Not only is direct access to the Internet expanding, but mobile smartphones can be used in many parts of the world to send and receive data.  An exciting development is the use of mobile applications, or “apps”, to address specific needs.  For example, the World Bank DataFinder app can be used to quickly access economic data from the World Bank’s own data servers. (Unfortunately, the first version is exclusively written for the iPhone, a device not readily available in much of the developing world.)  Mapping apps are proliferating, allowing access to topographic and thematic maps.  And farmers can use apps to learn the price of, and even sell, their commodities.  The World Bank is also sponsoring an Apps for Development competition to find new uses for World Bank data recently made publicly available.  Unfortunately, many of the submissions deal with global policy issues and there are few practical tools for natural resource management, agriculture, health, and other pressing development issues on the ground.  This will change once a demand from the field emerges, and we find better ways to link application developers with development and natural resource management practitioners. In 2009 USAID sponsored a competition, Development 2.0 through NetSquared, a technology service for social benefit organizations sponsored by Techsoup Global, a non-profit organization that helps NGOs to access donations of hardware, software, and training from the ICT industry.  Innovative partnerships such as USAID’s collaborations with NetSquared and NetHope.  NetHope is a partnership of technology providers and humanitarian organizations working to solve technology challenges.  NetHope is a Global Broadband Innovations Initiative partner.

The ability to remotely sense and monitor natural resources is an important new tool for scientists and managers.  In future weeks we will explore how ICT is being used to monitor global change, monitor biodiversity in the tropical forest canopy, monitor coral reefs, track the chain of custody of logs harvested in West African rainforests, and detect forest fires in Central America.  ICT has the potential to help identify potential links between a changing climate and disease outbreaks, forest and agricultural pests and food prices.

ICT can have significant affects where time lags are a barrier to achieving goals.  For example, early responses to emergencies such as forest fires or pest/disease/invasive species outbreaks are much more cost effective and more likely to be successful than late responses. It can also make a difference when markets are involved. For example, carbon credit monitoring can be made much for efficient, and importantly, the confidence in the effectiveness of the investment can increase when time lags concerning data about the status and extent of the resource can be eliminated. Note how the artificial boundaries created by thinking in terms of “sectors” such as agriculture, environment, and health, can blur when using data in innovative ways made possible through ICT tools.

ICT can also empower communities by enabling them to collect their own data, making it possible to overcome barriers to effective participation due to nonexistent or inaccessible information, and lessen their dependence upon often inaccessible outside experts.  Using ICT communities can monitor resource use, integrate traditional ecological knowledge with scientific data, and participate as full partners in decision-making processes.  A participatory Geographic Information Systems (computer mapping) community already exists, and an international grassroots mapping network is sharing progress using low-cost tools such as digital cameras and kites or helium balloons to create highly detailed area maps.

  • We will also review some yet unmet needs that ICT can fulfill, such as:
  • Real-time access to information to help port inspectors to identify pests while performing their duties (e.g., warehouses, docks)
  • Access to keys to help parataxonomists working to identify specimens of rare or harmful species
  • Remote upload of information from field observations and query of decision support tools that can be used in a dynamic situation like a disaster response.
  • Information on spot markets for natural resource products and for reservations and logistics for remote tourism facilities such as ecotourism operations, often associated with parks and protected areas.

Some additional considerations involve the possibility of social barriers to the use of ICT.  For example, women and men may have different access to ICT, as well as different needs and different ways of approaching its use.  Frequently, access to tools and equipment by women remains problematic even when ICT is available to the community. We will look for examples of how use patterns, specific needs, and cultural contexts are being used to maximize women’s participation in technology transfer.  More technology-savvy youth may dominate ICT, limiting its use by elders and thereby failing to access important historical knowledge and perspectives.  As with gender, care should be taken in introducing technologies to ensure that its use doesn’t promote inequality or skew the generation of knowledge.

Here are some tools for natural resource management that we will look at in more depth.

1) GPS. Global Positioning System. Used for recording location, useful for georeferencing data entry and producing maps.  Often integrated into cameras and smartphones. Geotagging photographs links a visual record to an observation.

2) GIS. Geographic Information System.  Manipulates georeferenced data in “map layers” to permit overlaying and comparing different types of information. GIS can integrate georeferenced field observations (e.g., from GPS) with remotely sensed images from satellites and aircraft, and digitized maps of terrain, landcover, infrastructure, demography, etc.  Extremely complex to use and expensive in commercial versions; open source GIS is growing rapidly to overcome barriers to entry by communities, small businesses and local government.  The discipline of participatory GIS (PGIS) focuses on making tools and techniques available to communities for natural resource planning. The PGIS community provides peer to peer technical assistance through a web site and email list.

3.  Telecommunications.  Voice, text (SMS) messaging, and other data transmitted over handheld devices used in natural resource management for managing, monitoring and reporting.

4.  Remote sensing.  Some satellite remote sensing data has been made freely available and is accessible providing the technology is in place to receive and process it.  Other data, primarily from high resolution commercial instruments, can be extremely expensive.  Efforts to overcome these barriers include:

  • Terralook, a service developed by NASA and provided by USGS includes georectified LANDSAT and ASTER images as high resolution JPEG compressed images.  Terralook provides a free opensource viewer that allows users to do basic measurements, annotations, and classifications of the images.
  • Several projects have supported the development of a hybrid GPS and camera system that can be mounted on fixed and rotary winged aircraft for mapping along transects, with software to connect tiles to provide a large-scale georeferenced image that can be used with GIS systems (high resolution cameras have been able to capture images as small as 5 cm at 1500′ elevation).
  • Automated remote monitoring.  An early example of the use of ICT for natural resource management was the US Forest Service’s Remote Automated Weather Stations (RAWS) deployed throughout western forests in the US to monitor fire weather.  Advances in technology now make it possible to create environmental sensor networks using high-tech miniature robots to record minute changes in the environment and transmitting the data to computers through telecommunications networks or satellite uplinks.  In the USA, a consortium of research institutions has created a National Ecological Observatory Network to monitor environmental impacts and changes. With the costs declining, these tools will soon be within reach of developing countries, to monitor critical watersheds, environmental impacts of extractive industries, and the habitats of rare and endangered species.

Technology transfer is an important tool for achieving global goals for economic development, biodiversity conservation, and the protection of ecosystem services.  It can help to advance effective governance and rule of law through a more informed, mobilized public and better monitoring of resource use to ensure that it is lawful as well as sustainable.  As a package, better governance and better information will provide an improved chance to lift the rural poor of the world out of poverty.

Copyright © 2020 Integra Government Services International LLC